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Abstract

We consider the classical problem of selecting the best of two treatments in clinical trials

with binary response. The target is to find the design that maximizes the power of the relevant

test. Many papers use a normal approximation to the power function and claim that Neyman

allocation that assigns subjects to treatment groups according to the ratio of the responses’

standard deviations, should be used. As the standard deviations are unknown, an adaptive

design is often recommended. The asymptotic justification of this approach is arguable, since

it uses the normal approximation in tails where the error in the approximation is larger than

the estimated quantity. We consider two different approaches for optimality of designs that are

related to Pitman and Bahadur definitions of relative efficiency of tests. We prove that the

optimal allocation according to the Pitman criterion is the balanced allocation and that the

optimal allocation according to the Bahadur approach depends on the unknown parameters.

Exact calculations reveal that the optimal allocation according to Bahadur is often close to

the balanced design, and the powers of both are comparable to the Neyman allocation for

small sample sizes and are generally better for large experiments. Our findings have important

implications to the design of experiments, as the balanced design is proved to be optimal or

close to optimal and the need for the complications involved in following an adaptive design for

the purpose of increasing the power of tests is therefore questionable.

∗We thank Amir Dembo for helpful comments and in particular for deriving the exact expression for ν∗ in (4).
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1 Introduction

We consider the problem of optimal allocation of individuals to two treatment groups with the goal of

selecting the better treatment. The problem arises frequently in phase III studies, though our original

motivation came from adaptive sequential designs, such as those conducted in phase I clinical trials.

Let A and B be two treatments with unknown probabilities of success, pA and pB. A trial with

n subjects is planned with NA(n) and NB(n) subjects assigned to treatment A and B, respectively,

where NA(n) + NB(n) = n. For each subject, a binary response, success or failure, is observed.

Let νn := NA(n)/n be the proportion of subjects assigned to treatment A. We sometimes refer to

νn as the allocation. The design problem considered here is of choosing the optimal allocation νn

that maximizes the power of the standard test of the hypothesis pA = pB versus one or two-sided

alternatives. For given n, pA, and pB, the optimal allocation fraction νn can be found by a finite

search over all possible allocations. However, much of the statistical literature suggests to study this

problem for large n instead, and look for the asymptotically optimal allocation fraction ν∗. As ν∗

depends on pA and pB, adaptive sequential designs have been proposed (e.g., Hu and Rosenberger

(2006) and numerous references therein). However, as shown below, when aiming at maximizing

the asymptotic power, ν = 1/2 is optimal or close to optimal. Thus, equal allocation to the two

treatments, which is indeed often used, is (almost) optimal, and adaptive allocation seems like an

unjustified complication.

Let Yi(m) ∼ Bin(m, pi) be the number of successes if m patients are assigned to treatment i

(i = A,B). Let also p̂A = p̂A(NA(n)) = YA(NA(n))
NA(n)

and p̂B = p̂B(NB(n)) = YB(NB(n))
NB(n)

be the estimators

of pA and pB; note that p̂A and p̂B depend on n and the allocation sequence νn, however they are

suppressed for notational convenience.

The Neyman allocation rule, ν =

√
pA(1−pA)√

pA(1−pA)+
√

pB(1−pB)
, minimizes the variance of the estima-

tor p̂A(n) − p̂B(n) for the difference of probabilities (e.g., Melfi et. al (2001)). However, it is not

clear that the Neyman allocation also maximizes the power of the Wald test for equality of propor-

tions, as appears to be widely believed (e.g., Brittain and Schlesselman (1982); Rosenberger et. al

(2001); Hu and Rosenberger (2003); Bandyopadhyay and Bhattacharya (2006); Hu et. al (2006);

Hu and Rosenberger (2006); Tymofyeyev et. al (2007); Biswas et. al (2010); Zhu and Hu (2010);
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Chambaz and van der Laan (2010)).

The standard Wald statistic for comparing pA and pB is

W := {p̂B − p̂A}
/

√

V (p̂A, p̂B, n, νn),

where V (pA, pB, n, νn) = pA(1−pA)
νn·n + pB(1−pB)

(1−νn)·n . In the above papers, the power is often calculated by

approximating the distribution of the squared Wald statistic by a non-central chi-square distribution;

the Neyman allocation then maximizes the non-centrality parameter. The argument is based on the

following normal approximation:

PpA,pB
(W > z1−α) = PpA,pB

(

p̂B − p̂A − (pB − pA)
√

V (pA, pB, n, νn)
>
z1−α ·

√

V (p̂A, p̂B, n, νn) − (pB − pA)
√

V (pA, pB, n, νn)

)

≈ 1 − Φ

(

z1−α ·
√

V (p̂A, p̂B, n, νn) − (pB − pA)
√

V (pA, pB, n, νn)

)

≈ 1 − Φ

(

z1−α − pB − pA
√

V (pA, pB, n, νn)

)

,

where Φ is the standard normal distribution function, and z1−α = Φ−1(1 − α). The Normal approx-

imation is valid only if (pB − pA)/
√

V (pA, pB, n, νn) = O(1), i.e., when pB − pA ≈ n−1/2. However,

for fixed pB − pA > 0, the term (pB − pA)/
√

V (pA, pB, n, νn) is of order
√
n, and the expression

Φ

(

z1−α − pB−pA√
V (pA,pB ,n,νn)

)

is of asymptotic order that is smaller than the precision of the normal ap-

proximation, and therefore its use is problematic. Thus, the claim that Neyman allocation maximizes

the power seems theoretically questionable.

For asymptotic power comparisons and evaluation of the relative asymptotic efficiency of certain

tests, two different criteria are often used, related to the notions of Pitman and Bahadur efficiency

(see e.g., van der Vaart (1998), Chapter 14). In our context, the Pitman approach looks at sequences

of probabilities pk
B > pk

A that tend to a common limit at a suitable rate. The Bahadur approach

considers fixed probabilities pA and pB and approximates the power using large deviations theory.

We show in the next sections that the optimal allocation corresponding to the Pitman approach

is always ν∗ = 0.5 while the Bahadur optimal allocation depends on pA and pB and can be calculated

in a way described below. Interestingly, computation of the Bahadur criterion for different values

of pA and pB reveals that the optimal allocation is often close to 0.5. In disagreement with some

of the papers mentioned above, these results cast doubts on the asymptotic justification of adaptive

designs and show that, at best, such designs can lead to a practically negligible improvement over a

non-sequential balanced design.

The paper is organized as follows: Sections 2 and 3 describe the approaches of Pitman and

Bahadur for maximizing the power, and find the corresponding optimal rules. In Section 4, the
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optimal allocation according to the Bahadur criterion is calculated for different parameters and

compared to the Neyman allocation. Exact calculations are performed for a wide range of parameters.

A related problem that arises in dose findings experiments is discussed in Section 5; the Neyman

allocation is shown to be optimal or close to optimal in this case. Section 6 extends the Bahadur

approach to general (rather than binary) responses; concluding remarks are given in Section 7. All

proofs are given in the Appendix.

2 The Pitman Approach

Pitman relative efficiency provides an asymptotic comparison of two families of tests applied to

a sequence of statistical problems. Here we utilize the same idea to compare different allocation

fractions.

Consider a sequence of statistical problems indexed by k, where pk
A = p + δA√

k
, pk

B = p + δB√
k
, for

δA < δB and 0 < p < 1. Let nk = nk(δA, δB, p, α, β, {νn}) be the minimal number of observations

required for a one-sided Wald test at significance level α and power at least β (for β > α) at the

point pk
A, p

k
B, where the observations are allocated to the two groups according to the fraction νn. Set

nk = ∞ if no finite number of observations satisfies these requirements. The next theorem implies

that the balanced allocation is asymptotically optimal.

Theorem 1. Fix δA < δB, α < β and 0 < p < 1. Let {νn} be a any sequence of allocations and let

{ν̃n} be another sequence of allocations satisfying ν̃n → 1/2. Then

lim inf
k→∞

nk(δA, δB, p, α, β, {νn})
nk(δA, δB, p, α, β, {ν̃n})

≥ 1.

The theorem follows readily from the following lemma, proved in the Appendix.

Lemma 1. I. If νn → ν for 0 < ν < 1 then

lim
k→∞

nk

k
=

(

z1−α − z1−β

(δB − δA)
·
√

p(1 − p)

ν(1 − ν)

)2

. (1)

II. If νn → 0 or νn → 1 then

lim
k→∞

nk

k
= ∞

III. For any sequence of allocations {νn}

lim inf
k→∞

nk

k
≥
(

z1−α − z1−β

(δB − δA)
·
√

p(1 − p)
1
4

)2

.
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Theorem 1 holds also when considering a two-sided test. The theorem shows that the balanced

design is asymptotically optimal in the Pitman sense, and as a consequence, one cannot gain efficiency

(in the above sense) by considering sequential adaptive designs. The key point here is that when pk
A

and pk
B converge to the same value p, the variances of their estimators converge to the same value

and hence the limiting Neyman allocation is 1/2 regardless of p. This phenomenon is not observed

in problems concerning the Normal distribution or similar cases where the variance is not a function

of the mean.

It can be argued that rather than considering sequences of statistical problems as above, one

should optimize for fixed pA and pB. The next section deals with this case.

3 The Bahadur Approach

In this section, large deviations theory is used to approximate the power of the Wald test for fixed pA

and pB. This power increases exponentially to one with n at a rate that depends on the allocation

fraction ν. Recall that p̂A and p̂B depend on both n and an allocation νn. The aim is to find the

optimal limiting allocation fraction ν∗ for which the rate is maximized. We prove the following large

deviations result:

Theorem 2. Define

H(t, ν) := ν log(1 − pA + pAe
t/ν) + (1 − ν) log(1 − pB + pBe

−t/(1−ν)),

and let g(ν) := inft>0H(t, ν).

I. One sided test: assume that pB > pA and νn → ν, where 0 < ν < 1, then for any constant

K ≥ 0

lim
n

1

n
log

{

1 − P

(

p̂B − p̂A
√

V (p̂A, p̂B, n, νn)
> K

)}

= g(ν). (2)

II. Two sided test: assume that pB 6= pA and νn → ν, where 0 < ν < 1, then for any constant

K > 0

lim
n

1

n
log

{

1 − P

( {p̂B − p̂A}2

V (p̂A, p̂B, n, νn)
> K

)}

= g(ν). (3)

III. If νn → 0 or 1 then (2) and (3) hold with g(0) = g(1) = 0.
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Note that p̂B− p̂A is not an average of n i.i.d random variables and, therefore, Theorem 2 does not

follow directly from the Cramér-Chernoff theorem (see e.g., van der Vaart (1998), p. 205), however,

its proof uses similar ideas.

For each fixed n, let ν
∗(1)
n = ν

∗(1)
n (pA, pB, K) be the allocation that maximizes the power of the

one sided test for a total sample size of n subjects, i.e,

ν∗(1)n = arg maxνn∈{ 1
n

,..., n−1
n

}P

(

p̂B − p̂A
√

V (p̂A, p̂B, n, νn)
> K

)

;

similarly, ν
∗(2)
n = ν

∗(2)
n (pA, pB, K) is the optimal allocation of the two-sided test.

Let ν∗ = ν∗(pA, pB) := arg minνg(ν). It is easy to prove directly that g is strictly convex, and

the minimum is attained uniquely. More generally, it is readily shown by differentiation that if

M(t) = EetX is a moment generating function, then νM(t/ν) is a convex function of ν. Theorem 2

suggests the use of ν∗ as the design fraction. However, for a given n, the optimal allocation, is not

necessarily ν∗, but the fraction ν
∗(1)
n or ν

∗(2)
n for the one or two-sided test, respectively. Therefore, it

is reasonable to use ν∗ as the design fraction only if ν
∗(i)
n → ν∗ for i = 1, 2. The following theorem

shows that this is indeed the case.

Theorem 3. I. If pB > pA then for any K ≥ 0, ν
∗(1)
n → ν∗.

II. If pB 6= pA then for any K > 0, ν
∗(2)
n → ν∗.

Remark 1. Another formulation of these results, for the one-sided case, say, is the following: assume

that pB > pA then for any sequence νn and constant K ≥ 0

lim inf
n

1

n
log

{

1 − P

(

p̂B − p̂A
√

V (p̂A, p̂B, n, νn)
> K

)}

≥ g(ν∗),

and the infimum is attained for sequences νn → ν∗.

Remark 2. When pA < pB represent success probabilities of two treatments, and treatment B is

selected as better if p̂B(n) > p̂A(n), then the expression in (2) with K = 0 approximates the probability

of incorrect selection.

4 Numerical Illustration

Some tedious calculations show that

ν∗ = log

{

pB log(pB

pA
)

(1 − pB) log( 1−pA

1−pB
)

}

/

log

{

pB(1 − pA)

pA(1 − pB)

}

. (4)
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Table 1: The optimal Bahadur allocation ν∗ for different parameters compared to Neyman allocation.

pA pB ν∗ Neyman allocation

0.5 0.8 0.518 0.556

0.5 0.65 0.504 0.512

0.6 0.75 0.510 0.531

0.7 0.75 0.505 0.514

0.7 0.85 0.521 0.562

0.7 0.9 0.535 0.604

0.85 0.95 0.541 0.621

0.5 0.9 0.542 0.625

Table 1 compares the asymptotic Bahadur optimal allocation and the Neyman allocation for several

pairs (pA, pB). The table and further systematic numerical calculations indicate that the Bahadur

allocation is closer to 0.5 than the Neyman allocation and that it is quite close to 0.5 unless pA

and pB are very far apart (e.g., pA = 0.5, pB = 0.9). In the latter case, the power is close to 1 for

any reasonable allocation. These findings justify the use of the balanced allocation and question the

utility of more complicated adaptive sequential designs.

We preformed some exact calculations to compare the Bahadur allocation, the balanced allocation

and the Neyman allocation. Figure 1 compares the difference between the maximal possible power

for sample size 200 and 500, and the power under the different allocation methods for the two-sided

test with α = 0.05 and for different parameters. The power is calculated exactly using R. While for

moderate sample size (n = 200) no allocation is better for all the parameters we considered, for large

sample size (n = 500), Bahadur is better for almost all parameters, and the balanced allocation is

usually better than Neyman; however, the differences in power are relatively small.

Figure 2 shows the power of the two-sided test for different allocations where pA = 0.7, pB = 0.9;

it is clearly seen that the Neyman allocation, which is widely recommended for maximizing the

power, is far from being optimal. Thus, the exact calculations presented in this section support the

theoretical results: the balanced allocation is usually better than the Neyman allocation for large

samples, and they are indistinguishable for small samples. In all cases, the differences are quite

negligible, and therefore the balanced allocation should be preferred due to its simplicity.
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(a) Moderate sample size (n = 200)
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(b) Large sample size (n = 500)

Figure 1: The differences between the maximal power of the two-sided test with critical value K = 1.96, attainable

(by ν
∗(2)
n ) and the Neyman allocation (black), the balanced allocation (red) and the Bahadur allocation (blue) for

pA = 0.5, . . . , 0.75, pB = pA + 0.2; for moderate (n = 200) and large (n = 500) sample size.

5 A Related Problem

Dose finding studies are conducted as part of phase I clinical trials in order to find the maximal

tolerated dose (MTD) among a finite, usually very small, number of potential doses. The MTD is

defined as the dose with the closest probability of toxic reaction to a pre-specified probability p0.

Recently, we showed that under certain natural assumptions, in order to estimate the desired dose

consistently, one can consider experiments that eventually concentrate on two doses (Azriel et. al

(2010)). Thus, asymptotically, the allocation problem in MTD studies reduces to the problem of

finding which of two probabilities of toxic reaction pA < pB (corresponding to the doses dA < dB) is

closer to p0.

Let p̂A and p̂B denote the proportions of toxic reactions in doses dA and dB based on a total

sample size of n individuals and an allocation νn. For large n, p̂A < p̂B, and a natural estimator for

the MTD is M̂TD = dA if (p̂A + p̂B)/2 > p0 and M̂TD = dB otherwise. Similar to the problems

discussed in previous sections, an optimal design is an allocation rule of n νn and n(1−νn) individuals

to doses dA and dB, respectively, such that P (M̂TD = dA) = P ((p̂A + p̂B)/2 > p0) is maximized if
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Figure 2: The power of Wald tests with critical value K = 1.96 for different allocations ν where pA = 0.7, pB = 0.9

and n = 500. The smooth line is a parabolic fit to the function. The vertical lines show the balanced allocation

(ν = 0.5), the Bahadur allocation (ν = 0.5349374) and the Neyman allocation (ν = 0.6043561).

dA is indeed the MTD.

For the current problem, the Pitman approach is translated to a comparison of designs under

sequences of parameters pk
A, pk

B and pk
0 such that |(pk

A + pk
B)/2 − pk

0| = K/
√
k, for fixed 0 < K <∞,

and pk
A → pA, pk

B → pB. Let 0 < ν < 1 and let nk = nk(p
k
A, p

k
B, p

k
0, α, {νn}) be the minimal number

of observations required such that the probability of incorrect estimation of the MTD is smaller than

α for the given parameters when the allocation for dose dA is n · νn. As in Lemma 1, it can be shown

that if νn → ν then

lim
k→∞

nk

k
=
{z1−α

2K

}2
{

pA(1 − pA)

ν
+
pB(1 − pB)

1 − ν

}

.

Thus, the asymptotically optimal design uses Neyman allocation, ν =

√
pA(1−pA)√

pA(1−pA)+
√

pB(1−pB)
, as it

minimizes the limit of nk/k. Unlike the previous problem, now pk
A and pk

B do not converge to the

same value under the Pitman approach as defined here, and hence the Neyman allocation does not

reduce to the balanced design.

For the case of fixed pA, pB, and p0, assume that pB is nearer than pA to p0, and consider the

problem of minimizing the probability of selecting dA. The following theorem, analogous to Theorems

2 and 3, gives the asymptotic optimal allocation rule in the current setting.
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Table 2: Comparison of the Bahadur and Pitman (here Neyman) allocation rules for different parameters.

pA pB p0 Bahadur Pitman

0.1 0.3 0.28 0.420 0.396

0.2 0.35 0.3 0.460 0.456

0.22 0.33 0.3 0.471 0.468

0.25 0.35 0.33 0.479 0.476

0.2 0.4 0.33 0.455 0.449

0.1 0.4 0.3 0.400 0.380

Theorem 4. Let νn = NA(n)/n, 0 < ν < 1, and assume that νn → ν, then,

lim
n→∞

1

n
logP [{p̂A + p̂B}/2 ≥ p0] = ψ(ν),

where ψ(ν) = inft{ν log(1 − pA + pAe
t/ν) + (1 − ν) log(1 − pB + pBe

t/(1−ν)) − 2p0t}.
Moreover, let ν∗ = arg minψ(ν), and let ν∗n be the value of the allocation minimizing P [{p̂A +

p̂B}/2 ≥ p0] for a given n. Then, ν∗n → ν∗.

We calculated ν∗ for several values of pA and pB and found that ν∗ is often close to the Neyman

allocation, see Table 2. Both criteria, Bahadur and Pitman, yield quite similar results in this problem.

Allocating subjects according to the Neyman or Bahadur improves the probability of correct MTD

estimation compared to the balanced allocation for very large samples, as the optimal allocations

according to Bahadur or Pitman are far from 0.5. Calculations not presented here, show that for

practical sample sizes for the MTD problem, all three methods differ in a negligible way.

6 A General Response

In previous sections, we dealt with the very important, though specific, case of a binary response. In

this section, we consider the more general case where the response of an individual treated in group

A (B) follows a distribution FA (FB) having moment generating function MA(t) (MB(t)), and find

the optimal allocation according to the Bahadur approach. Let ȲA(m) (ȲB(m)) denote the average

of m responses of subjects having treatment A (B). Assume that the treatment with the largest

mean response is declared better at the end of the experiment. The following theorem, which can

10



Table 3: The optimal allocation ν∗ for different distributions compared to the Neyman allocation.

FA FB Bahadur allocation Neyman allocation

Poisson(1) Poisson(2) 0.471 0.414

Poisson(2) Poisson(3) 0.483 0.449

Poisson(3) Poisson(4) 0.488 0.464

Poisson(4) Poisson(5) 0.491 0.472

Gamma(0.5,0.5) Gamma(0.5,0.6) 0.515 0.590

Gamma(0.5,0.5) Gamma(0.5,0.7) 0.528 0.662

Gamma(0.5,0.5) Gamma(0.5,0.8) 0.539 0.719

Gamma(0.5,0.5) Gamma(0.5,0.9) 0.549 0.764

be proved in a similar way as Theorems 2 and 3, provides the Bahadur optimal allocation rule for

correct selection:

Theorem 5. Assume that treatment B is better, i.e,
∫

xFB(dx) >
∫

xFA(dx), and that νn → ν.

Then,

lim
n→∞

1

n
logP

{

ȲA(n νn) ≥ ȲB(n(1 − νn))
}

= h(ν),

where

h(ν) = inf
t

[ν log{MA(t/ν)} + (1 − ν) log{MB[−t/(1 − ν)]}]. (5)

Moreover, let ν∗ = arg minν h(ν), and ν∗n be the value of the allocation minimizing

P
{

ȲA(n νn) ≥ ȲB(n(1 − νn))
}

. Then ν∗n → ν∗.

When the responses in the two treatments are normally distributed, then the Bahadur allocation

agrees with the Neyman allocation. This can be easily verified by using the moment generating

functions of Normal variables in (5). However, for other distributions, the allocations suggested by

the Bahadur and the Neyman criteria may differ considerably. Table 3 compares the Bahadur and

the Neyman allocations for different Poisson and Gamma distributions. The two rules clearly differ.

As in the Binomial case, the Bahadur allocation is closer to 0.5 than to the Neyman allocation.

Further study is required to determine if the improvement over the balanced allocation, in terms of

power or probability of correct selection, is significant. Anyway, optimality of the Neyman allocation

for non-normal distributions should be questioned, and may hold only under restrictive conditions.
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7 Conclusions

We discussed asymptotic approximations of power and probability of correct selection in testing and

selecting the best treatment, and in MTD finding, and related optimal allocation of subjects to

treatments.

Neyman allocation is optimal when the response is Normal, and it is asymptotically optimal

in the Pitman sense, that is, for converging sequences of alternatives as described above. In the

binary response selection problem in which pA and pB become closer, Neyman allocation reduces to

a balanced allocation, independent of the parameters pA and pB. The Bahadur allocation for fixed

pA and pB turns out to be close to balanced, and therefore, by both criteria, our conclusion is that

adaptive allocation seems unwarranted, and the simpler, non-sequential balanced allocation should

be preferred.

Our findings are partly in contrast with the literature that bases allocations on the noncentrality

parameter appearing in a Normal or Chi-Square approximation (e.g., Rosenberger et. al (2001);

Tymofyeyev et. al (2007)). These designs minimize or control the variance of the difference but need

not be efficient in the sense of controlling or maximizing the power.

A Appendix

Proof of Lemma 1 part I. The proof, included here for completeness, uses arguments as in

Theorem 14.19 in van der Vaart (1998) (p. 205), which is stated in terms of relative efficiency rather

than allocation.

First note that limk nk = ∞; otherwise, there exists a bounded subsequence of nk on which the

power converges to a value ≤ α, since as k → ∞ we have pk
A−pk

B → 0. This contradicts the definition

of nk and the assumption that α < β.

By the Berry-Esseen theorem we have

p̂k
A − (p+ δA√

k
)

√

(p+
δA√

k
)[1−(p+

δA√
k
)]

νnk
·nk

D→ N(0, 1)

since the third moment is bounded; a similar limit holds for p̂k
B. Here we use the notation p̂k

A =

p̂A(νnk
nk) = Y k

A (νnk
nk)/(νnk

nk), where Y k
A (m) ∼ Bin(m, pk

A) is the sum of m independent binary

responses with probability pk
A.

12



Now, if νnk
→ ν we have

Uk :=

√
nk(p̂

k
B − p̂k

A) − (δB − δA)
√

nk

k
√

p(1−p)
ν(1−ν)

D→ N(0, 1). (6)

Since nk → ∞, the critical value for the level α one-sided Wald test is z1−α + o(1); then

Ppk
A,pk

B
(W > z1−α + o(1)) = P

(

p̂k
B − p̂k

A
√

V (p̂k
A, p̂

k
B, nk, νnk

)
> z1−α + o(1)

)

= P



Uk >
(z1−α + o(1))

√

V (p̂k
A, p̂

k
B, nk, νnk

)nk
√

p(1−p)
ν(1−ν)

−
(δB − δA)

√

nk

k
√

p(1−p)
ν(1−ν)



 .

Also,
√

V (p̂k
A, p̂

k
B, nk, νnk

)nk
√

p(1−p)
ν(1−ν)

a.s.→ 1,

and since the limiting power is exactly β we have due to (6)

z1−α −
(δB − δA){limk

√

nk

k
}

√

p(1−p)
ν(1−ν)

= z1−β;

hence (1) holds.

Proof of part II. We only prove the case νn → 0, as νn → 1 is similar. If nνn is bounded, then the

power converges to α and nk = ∞ for large k.

Assume now that n νn → ∞; by the Berry-Esseen theorem and Slutsky’s Lemma we have

√
nk νnk

(p̂k
A − (p+

δA√
k
))

D→ N(0, p(1 − p)) and
√
nk νnk

(p̂k
B − (p+

δB√
k
))

D→ 0.

This implies that

√
nk νnk

(p̂k
B − p̂k

A) − (δB − δA)

√

nk νnk

k

D→ N(0, p(1 − p))

and by arguments as in the first part we have

lim
k

nk νnk

k
=

(

z1−α − z1−β

δB − δA

)2

p(1 − p).

Because νnk
→ 0, limk

nk

k
= ∞.

Proof of part III. There exists a subsequence {k′} such that νnk′
→ ν ′ for some ν ′ and

lim inf
k→∞

nk

k
= lim

k′→∞

nk′

k′
=

(

z1−α − z1−β

(δB − δA)
·
√

p(1 − p)

ν ′(1 − ν ′)

)2

,

13



where the second equality follows by part I. If ν ′(1 − ν ′) = 0 we interpret the limit as ∞; since

ν ′(1 − ν ′) ≤ 1
4

the third part of the lemma follows.

Proof of Theorem 2 parts I and II. The proof follows known large deviations ideas; however,

certain variations are needed for the present non-standard case. Notice that the probability in part

I is larger than the probability of part II (for
√
K). Therefore, it is enough to show that for any

K ≥ 0

lim sup
n

1

n
log

{

1 − P

(

p̂B − p̂A
√

V (p̂A, p̂B, n, νn)
> K

)}

≤ g(ν), (7)

and for any K > 0

lim inf
n

1

n
log

{

1 − P

( {p̂B − p̂A}2

V (p̂A, p̂B, n, νn)
> K

)}

≥ g(ν).

In fact, instead of the latter inequality we prove in the sequel a stronger result, namely

lim inf
n

1

n
logP

(

0 ≤ p̂A − p̂B
√

V (p̂A, p̂B, n, νn)
≤ K ′

)

≥ g(ν), (8)

for all K ′ > 0, which is also used for the case of K = 0 in part I, when K ′ = ∞.

For the upper bound (7), define S(n) :=
√

V (p̂A, p̂B, νn, n) · n; notice that S(n) is bounded.

Hence, for any ε > 0 and for large enough n we have

1 − P

(

p̂B − p̂A
√

V (p̂A, p̂B, n, νn)
> K

)

= P

(

p̂A − p̂B ≥ − K√
n
S(n)

)

≤ P (p̂A − p̂B ≥ −ε) .

Now, for any t > 0,

P (p̂A − p̂B ≥ −ε) = P (e
t(

YA(n νn)

NA(n)/n
−YB(n(1−νn))

NB(n)/n
) ≥ e−ntε) ≤ E[et(

YA(n νn)

νn
−YB(n(1−νn))

1−νn
)]entε,

by Markov’s inequality. We can write the latter term as

(1 − pA + pAe
t/νn)n νn · (1 − pB + pBe

−t/(1−νn))n(1−νn)entε.

Since νn → ν, and the inequality holds for all t > 0,

lim sup
n

1

n
logP

(

p̂A − p̂B ≥ − K√
n
S(n)

)

≤ gε(ν),

where gε(ν) := inft>0{εt + H(t, ν)}. This is true for any ε > 0, and by the continuity of gε(ν) in ε

we have for any K ≥ 0

lim sup
n

1

n
logP

(

p̂A − p̂B ≥ − K√
n
S(n)

)

≤ g(ν),

14



which verifies (7).

To prove (8), assume without loss of generality that pB > pA; define

Tn := p̂A(n νn) − p̂B(n(1 − νn)) =
YA(n νn)

n νn

− YB(n(1 − νn))

n(1 − νn)
.

The log of the moment generating function of Tn is

logE[etTn ] = n νn log(1 − pA + pAe
t

n νn ) + n(1 − νn) log(1 − pB + pBe
−t

n(1−νn) ) = nH(
t

n
, νn). (9)

Since E[Tn] = pA −pB < 0, by (9) we have d
dt
H(0, νn) < 0. Also, H(0, νn) = 0 and H(·, νn) is strictly

convex being the log of a moment generating function, up to a constant. Since P (Tn > 0) > 0 it

follows that H(t, νn) → ∞ as t → ∞ and therefore, arg mint>0H(t, νn) =: t
(n)
0 is a unique interior

point and ∂
∂t
H(t

(n)
0 , νn) = 0. Let t0 be the minimizer of H(·, ν); we show that t

(n)
0 → t0. If there

is a subsequence {t(nk)
0 } that converges to t1 ≤ ∞ then H(t

(nk)
0 , νnk

) ≤ H(t0, νnk
) (as t

(nk)
0 is the

minimizer) implies H(t1, ν) ≤ H(t0, ν) and therefore t1 = t0 as the minimizer is unique and finite.

Define a new random variable Zn, which is the Cramér transform of Tn

P (Zn = z) := e−ng(νn)ezt
(n)
0 nP (Tn = z).

Now,

P

(

0 ≤ p̂A − p̂B
√

V (p̂A, p̂B, n, νn)
≤ K

)

= P

(

0 ≤ Tn ≤ K√
n
S(n)

)

= E[I{0 ≤ Zn ≤ K√
n
S(n)}e−Znt

(n)
0 n]eng(νn) ≥ P

(

0 ≤ Zn ≤ K√
n
S(n)

)

e
−K 1

2

√

1
νn

+ 1
1−νn

t
(n)
0

√
n
eng(νn),

where the last inequality holds since e−Zn ≥ e
− K√

n
S(n) ≥ e

− K√
n

1
2

√

1
νn

+ 1
1−νn . It follows that

g(νn)− 1

n
logP

(

0 ≤ p̂A − p̂B
√

V (p̂A, p̂B, n, νn)
≤ K

)

≤
− logP

(

0 ≤ Zn ≤ K√
n
S(n)

)

n
+
K 1

2

√

1
νn

+ 1
1−νn

t
(n)
0

√
n

.

Clearly, the second term on the right-hand side vanishes as n goes to infinity; for the first, we claim

that
√
nZn is asymptotically N(0, ∂2

∂t2
H(t

(n)
0 , νn)) and consequently P

(

0 ≤ Zn ≤ K√
n
S(n)

)

→ C for

some constant C > 0. Indeed, the log of the moment generating function of
√
nZn is

logE[es
√

nZn ] = −ng(νn) + logE[eTn(s
√

n+t
(n)
0 n)] = n{−H(t

(n)
0 , νn) +H(t

(n)
0 +

s√
n
, νn)},

where the last equality follows from (9) and the identity g(νn) = H(t
(n)
0 , νn). By Taylor expansion of

H(·, νn) around t
(n)
0 we obtain

H(t
(n)
0 +

s√
n
, νn) −H(t

(n)
0 , νn) =

1

2

s2

n

∂2

∂t2
H(t

(n)
0 , νn) +O(n−3/2)
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since the first derivative is 0, and therefore,

logE[es
√

nZn ] → s2

2

∂2

∂t2
H(t

(n)
0 , νn).

We conclude that

lim sup
n

{

g(νn) − 1

n
logP

(

0 ≤ p̂A − p̂B
√

V (p̂A, p̂B, n, νn)
≤ K

)}

≤ 0,

hence,

lim inf
1

n
logP

(

0 ≤ p̂A − p̂B
√

V (p̂A, p̂B, n, νn)
≤ K

)

≥ g(ν)

and part I and II follow.

Proof of part III. First note that (7) clearly holds with g(ν) = 0 as log{1−P (·)} ≤ 0, so it remains

to prove (8) for g(ν) = 0, that is, for any K > 0

lim inf
n

1

n
logP

(

0 ≤ p̂A − p̂B
√

V (p̂A, p̂B, νn, n)
≤ K

)

≥ 0.

We only prove the case νn → 0, as νn → 1 is similar. If n νn 6→ ∞ then p̂A is inconsistent and the

limit is easily seen to be zero. Assume now that n νn → ∞; since

V (p̂A, p̂B, νn, n) =
p̂A(1 − p̂A)

n νn

+
p̂B(1 − p̂B)

n(1 − νn)
≥ p̂A(1 − p̂A)

n νn

we have

P
(

0 ≤ p̂A − p̂B
√

V (p̂A, p̂B, νn, n)
≤ K

)

≥ P
(

0 ≤ p̂A − p̂B ≤ K
√

p̂A(1 − p̂A)√
n νn

)

.

Now, for ε := KpA(1−pA)
2

,

P
(

0 ≤ p̂A − p̂B ≤ K
√

p̂A(1 − p̂A)√
n νn

)

≥ P
(

{0 ≤ p̂A − p̂B ≤ K
√

p̂A(1 − p̂A)√
n νn

} ∩ {p̂B ∈ (pB − ε√
n νn

, pB)}
)

≥ P
(

pB ≤ p̂A ≤ pB +
K
√

p̂A(1 − p̂A) − ε√
n νn

)

P
(

p̂B ∈ (pB − ε√
n νn

, pB)
)

.

Taking logs and limits in the above product, we have to consider two parts. For the first, we have

by Lemma 2 below

lim
n

1

n νn

logP
(

pB ≤ p̂A ≤ pB +
K
√

p̂A(1 − p̂A) − ε√
n νn

)

= C.

for some constant C; therefore,

lim
n

1

n
logP

(

pB ≤ p̂A ≤ pB +
K
√

p̂A(1 − p̂A) − ε√
n νn

)

= 0.
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The limit of the log of the second part divided by n is 0, since

P
(

p̂B ∈ (pB − ε√
n νn

, pB)
)

≥ P (−ε ≤
√

n(1 − νn)(p̂B − pB) ≤ 0) → C ′ > 0

by the CLT.

Lemma 2. Let V1, V2, . . . be i.i.d with EV1 < 0 and moment generation function M(t), and let Xn be

positive and uniformly bounded random variables that satisfy Xn
a.s.→ K for a constant K > 0; then,

lim
n

1

n
logP

(

0 ≤ V̄n ≤ Xn√
n

)

= inf
t>0

{logM(t)}.

Proof of Lemma 2. The lemma follows by the same argument as in van der Vaart (1998), p. 206

(replacing ε in that proof by K̃√
n
, where K̃ is the bound of Xn); see also the proof of parts I and II

of Theorem 2, where a similar argument is used.

Proof of Theorem 3. We will prove part I; the proof of Part II is similar. Consider the sequence

of allocations ν ′n = ⌊n·ν∗⌋
n

; Theorem 2 implies that

lim
n

1

n
log

{

1 − P

(

p̂B(n(1 − ν ′n)) − p̂A(n ν ′n)
√

V (p̂A, p̂B, n, ν ′n)
> K

)}

= g(ν∗). (10)

Now, let ν̃ 6= ν∗, 0 ≤ ν̃ ≤ 1, be a limit of a certain subsequence {nk}, i.e., ν
∗(1)
nk → ν̃, and define

ε = (g(ν̃) − g(ν∗))/2. By (10), there exists N such that for n ≥ N

1

n
log

{

1 − P

(

p̂B(n(1 − ν ′n)) − p̂A(n ν ′n)
√

V (p̂A, p̂B, n, ν ′n)
> K

)}

< g(ν∗) + ε.

Since ν
∗(1)
nk → ν̃ we have by Theorem 2, for large enough k

1

nk

log







1 − P





p̂B(nk(1 − ν
∗(1)
nk )) − p̂A(nk ν

∗(1)
nk )

√

V (p̂A, p̂B, nk, ν
∗(1)
nk )

> K











> g(ν̃) − ε = g(ν∗) + ε,

where g(0) = g(1) = 0. Hence, there exists nk > N such that

P





p̂B(nk(1 − ν
∗(1)
nk )) − p̂A(nk ν

∗(1)
nk )

√

V (p̂A, p̂B, nk, ν
∗(1)
nk )

> K



 < P





p̂B(nk(1 − ν ′nk
)) − p̂A(nk ν

′
nk

)
√

V (p̂A, p̂B, nk, ν ′nk
)

> K





in contradiction to the optimality of ν
∗(1)
nk ; therefore the limit of every converging sub-sequence is ν∗.

The proofs of Theorems 4 and 5 are omitted because they are very similar to the proofs

of Theorems 2 and 3.
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